Skip to content
Snippets Groups Projects
heath_check.ipynb 64.1 KiB
Newer Older
Karine PARRA's avatar
Karine PARRA committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Credentials"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import sys\n",
    "import copernicusmarine\n",
    "\n",
    "project_root = os.path.abspath(os.path.join(os.path.dirname(\"__file__\"), '..'))\n",
    "sys.path.append(project_root)\n",
    "from source.download_forcing import *\n",
    "from source.widgets import *\n",
    "\n",
    "# ----------------------- COPERNICUS ---------------------------------------------------------------------------------\n",
    "# copernicusmarine.login()\n",
    "\n",
    "# ----------------------- NAOS ---------------------------------------------------------------------------------\n",
    "WRITE_IN_NAOS: bool = True \n",
    "NAOS_TOKEN = \"your token\"\n",
    "\n",
    "os.environ[\"WRITE_IN_NAOS\"] = str(WRITE_IN_NAOS)\n",
    "os.environ[\"NAOS_TOKEN\"] = NAOS_TOKEN"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Execute"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Command Line"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "INFO - 2024-07-26T08:13:49Z - Dataset version was not specified, the latest one was selected: \"202211\"\n",
      "INFO - 2024-07-26T08:13:49Z - You forced selection of dataset part \"default\"\n",
      "INFO - 2024-07-26T08:13:49Z - You forced selection of service: arco-time-series\n",
      "INFO - 2024-07-26T08:13:53Z - Dataset version was not specified, the latest one was selected: \"202211\"\n",
      "INFO - 2024-07-26T08:13:53Z - You forced selection of dataset part \"default\"\n",
      "INFO - 2024-07-26T08:13:53Z - You forced selection of service: arco-time-series\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'Creation of new simulation parameters failed : Error while downloading datas for copernicus-temp : Error in dowloading Copernicus datas : Some or all of your subset selection [2024-06-23 00:00:00, 2024-06-24 00:00:00] for the time dimension  exceed the dataset coordinates [2024-07-12 22:00:00, 2024-07-29 23:00:00]'"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sources3D=['constants-3d', 'copernicus-o2', 'copernicus-temp', 'hub-eau-3d', 'magest', 'open-meteo']\n",
    "model3D = \"gironde-xl-3d\"\n",
    "ProjectId3D=893\n",
    "\n",
    "create_simulation(SimulationParameters( model=model3D,\n",
    "                                        project_id=ProjectId3D,\n",
    "                                        sources=sources3D,\n",
    "                                        start_date=\"2024-06-23T00:00:00.000000Z\",\n",
    "                                        end_date=\"2024-06-24T00:00:00.000000Z\",\n",
    "                                        naos_token=NAOS_TOKEN,\n",
    "                                        write_in_naos=WRITE_IN_NAOS,\n",
    "                                        ))[\"result\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\"\"\"\n",
    "Temperature :\n",
    "- variables : so (sea_water_salinity)\n",
    "              thetao (sea_water_potential_temperature)\n",
    "- HISTORICAL :\n",
    "    - cmems_mod_ibi_phy_my_0.083deg-3D_P1D-m \n",
    "- FORECAST :\n",
    "    - cmems_mod_ibi_phy_anfc_0.027deg-3D_PT1H-m \n",
    "    - cmems_mod_ibi_phy_anfc_0.027deg-3D_P1D-m \n",
    "\n",
    "Oxygene :\n",
    "- variables : o2 (mole_concentration_of_dissolved_molecular_oxygen_in_sea_water)\n",
    "              nh4 (mole_concentration_of_ammonium_in_sea_water)\n",
    "- HISTORICAL :\n",
    "    - cmems_mod_ibi_bgc_my_0.083deg-3D_P1D-m \n",
    "- FORECAST :\n",
    "    - cmems_mod_ibi_bgc_anfc_0.027deg-3D_P1D-m \n",
    "\n",
    "Sea :\n",
    "- Variables : VHM0 (sea_surface_wave_significant_height)\n",
    "              VTPK (sea_surface_wave_period_at_variance_spectral_density_maximum)\n",
    "              VMDR (sea_surface_wave_from_direction)\n",
    "- HISTORICAL :\n",
    "    - cmems_mod_ibi_wav_my_0.027deg_PT1H-i \n",
    "- FORECAST :\n",
    "    - cmems_mod_ibi_wav_anfc_0.05deg_PT1H-i \n",
    "\n",
    "\n",
    "1- cmems = Copernicus Marine Environment Monitoring Service\n",
    "2- mod = model\n",
    "3- ibi = atlantic - Iberian + golfe de Biscay + Irish (European waters)\n",
    "4- phy = physical products, bgc = BioGeoChimical, wav = Waves\n",
    "5- anfc = ANalysis and ForCast, my = MultiYear\n",
    "6- 0.027deg, 0.083deg, 0.05deg = ??\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "TEMP\n",
      "- forecast1\n",
      "[1720821600000, 1722380400000]\n",
      "[1720821600000, 1722380400000]\n",
      "2024-07-13 00:00:00\n",
      "2024-07-31 01:00:00\n",
      "- forecast2\n",
      "[1617408000000, 1722297600000]\n",
      "[1617408000000, 1722297600000]\n",
      "2021-04-03 02:00:00\n",
      "2024-07-30 02:00:00\n",
      "historical\n",
      "[725846400000, 1640649600000]\n",
      "[725846400000, 1640649600000]\n",
      "1993-01-01 01:00:00\n",
      "2021-12-28 01:00:00\n",
      "---------------------\n",
      "02\n",
      "forecast\n",
      "[1617408000000, 1722643200000]\n",
      "[1617408000000, 1722643200000]\n",
      "2021-04-03 02:00:00\n",
      "2024-08-03 02:00:00\n",
      "historical\n",
      "[725846400000, 1640649600000]\n",
      "[725846400000, 1640649600000]\n",
      "1993-01-01 01:00:00\n",
      "2021-12-28 01:00:00\n",
      "---------------------\n",
      "SEA\n",
      "forecast\n",
      "[1637971200000, 1722726000000]\n",
      "[1637971200000, 1722726000000]\n",
      "[1637971200000, 1722726000000]\n",
      "2021-11-27 01:00:00\n",
      "2024-08-04 01:00:00\n",
      "historical\n",
      "1993-01-02 01:00:00\n",
      "2021-12-27 00:00:00\n"
     ]
    }
   ],
   "source": [
    "from pprint import pprint\n",
    "\n",
    "copernicus_catalog = copernicusmarine.describe(include_datasets=True)\n",
    "all_datasets_list = [data['datasets'] for data in copernicus_catalog['products']]\n",
    "all_datasets = [item for sublist in all_datasets_list for item in sublist]\n",
    "\n",
    "def find_subset(dataset: dict, key_filtered: str, key_filter: str, value_filter: str)-> dict :\n",
    "    return [data[key_filtered] for data in dataset if data[key_filter] == value_filter][0]\n",
    "\n",
    "def find_source_limits(dataset: dict, copernicus_dataset: str, copernicus_variable: str) -> list :\n",
    "    versions = find_subset(all_datasets, 'versions', 'dataset_id', copernicus_dataset)\n",
    "    labels = [data['label'] for data in versions]\n",
    "    labels.sort()\n",
    "    label = labels[-1]\n",
    "    parts = find_subset(versions, 'parts', 'label', label)\n",
    "    services = find_subset(parts, 'services', 'name', 'default')\n",
    "    variables = [data['variables'] for data in services if data['service_type']['service_name'] == 'arco-time-series'][0]\n",
    "    coordinates = find_subset(variables, 'coordinates', 'short_name', copernicus_variable)\n",
    "    return [[data['minimum_value'],data['maximum_value']] for data in coordinates if data['coordinates_id'] == 'time'][0]\n",
    "\n",
    "\n",
    "print(\"TEMP\")\n",
    "print(\"- forecast1\")\n",
    "dataset_id = \"cmems_mod_ibi_phy_anfc_0.027deg-3D_PT1H-m\" \n",
    "temp_forecast_1_thetao = find_source_limits(all_datasets, dataset_id, 'thetao')\n",
    "temp_forecast_1_so = find_source_limits(all_datasets, dataset_id, 'so')\n",
    "print(temp_forecast_1_thetao)\n",
    "print(temp_forecast_1_so)\n",
    "print(datetime.fromtimestamp(temp_forecast_1_so[0]/1000))\n",
    "print(datetime.fromtimestamp(temp_forecast_1_so[1]/1000))\n",
    "\n",
    "print(\"- forecast2\")\n",
    "dataset_id = \"cmems_mod_ibi_phy_anfc_0.027deg-3D_P1D-m\" \n",
    "temp_forecast_2_thetao = find_source_limits(all_datasets, dataset_id, 'thetao')\n",
    "temp_forecast_2_so = find_source_limits(all_datasets, dataset_id, 'so')\n",
    "print(temp_forecast_2_thetao)\n",
    "print(temp_forecast_2_so)\n",
    "print(datetime.fromtimestamp(temp_forecast_2_so[0]/1000))\n",
    "print(datetime.fromtimestamp(temp_forecast_2_so[1]/1000))\n",
    "\n",
    "print(\"historical\")\n",
    "dataset_id = \"cmems_mod_ibi_phy_my_0.083deg-3D_P1D-m\" \n",
    "copernicus_temp_historical_thetao = find_source_limits(all_datasets, dataset_id, 'thetao')\n",
    "copernicus_temp_historical_so = find_source_limits(all_datasets, dataset_id, 'so')\n",
    "print(copernicus_temp_historical_thetao)\n",
    "print(copernicus_temp_historical_so)\n",
    "print(datetime.fromtimestamp(copernicus_temp_historical_so[0]/1000))\n",
    "print(datetime.fromtimestamp(copernicus_temp_historical_so[1]/1000))\n",
    "\n",
    "print(\"---------------------\")\n",
    "print(\"02\")\n",
    "\n",
    "print(\"forecast\")\n",
    "dataset_id = \"cmems_mod_ibi_bgc_anfc_0.027deg-3D_P1D-m\" \n",
    "o2_forecast_o2 = find_source_limits(all_datasets, dataset_id, 'o2')\n",
    "o2_forecast_nh4 = find_source_limits(all_datasets, dataset_id, 'nh4')\n",
    "pprint(o2_forecast_o2)\n",
    "pprint(o2_forecast_nh4)\n",
    "print(datetime.fromtimestamp(o2_forecast_nh4[0]/1000))\n",
    "print(datetime.fromtimestamp(o2_forecast_nh4[1]/1000))\n",
    "\n",
    "print(\"historical\")\n",
    "dataset_id = \"cmems_mod_ibi_bgc_my_0.083deg-3D_P1D-m\" \n",
    "o2_historical_o2 = find_source_limits(all_datasets, dataset_id, 'o2')\n",
    "o2_historical_nh4 = find_source_limits(all_datasets, dataset_id, 'nh4')\n",
    "pprint(o2_historical_o2)\n",
    "pprint(o2_historical_nh4)\n",
    "print(datetime.fromtimestamp(o2_historical_nh4[0]/1000))\n",
    "print(datetime.fromtimestamp(o2_historical_nh4[1]/1000))\n",
    "\n",
    "print(\"---------------------\")\n",
    "print(\"SEA\")\n",
    "\n",
    "print(\"forecast\")\n",
    "dataset_id = \"cmems_mod_ibi_wav_anfc_0.05deg_PT1H-i\" \n",
    "sea_forecast_VHMO = find_source_limits(all_datasets, dataset_id, 'VHM0')\n",
    "sea_forecast_VTPK = find_source_limits(all_datasets, dataset_id, 'VTPK')\n",
    "sea_forecast_VMDR = find_source_limits(all_datasets, dataset_id, 'VMDR')\n",
    "pprint(sea_forecast_VHMO)\n",
    "pprint(sea_forecast_VTPK)\n",
    "pprint(sea_forecast_VMDR)\n",
    "print(datetime.fromtimestamp(sea_forecast_VMDR[0]/1000))\n",
    "print(datetime.fromtimestamp(sea_forecast_VMDR[1]/1000))\n",
    "\n",
    "print(\"historical\")\n",
    "dataset_id = \"cmems_mod_ibi_wav_my_0.027deg_PT1H-i\" \n",
    "sea_historical_VHM0 = find_source_limits(all_datasets, dataset_id, 'VHM0')\n",
    "sea_historical_VTPK = find_source_limits(all_datasets, dataset_id, 'VTPK')\n",
    "sea_historical_VMDR = find_source_limits(all_datasets, dataset_id, 'VMDR')\n",
    "print(datetime.fromtimestamp(sea_historical_VMDR[0]/1000))\n",
    "print(datetime.fromtimestamp(sea_historical_VMDR[1]/1000))\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "---------------- O2 forecast\n",
      "min = 1617408000.0\n",
      "2021-04-03 02:00:00\n",
      "max = 1722643200.0\n",
      "2024-08-03 02:00:00\n",
      "105235200.0 = 1218.0 jours\n",
      "---------------- O2 history\n",
      "min = 725846400.0\n",
      "1993-01-01 01:00:00\n",
      "max = 1640649600.0\n",
      "2021-12-28 01:00:00\n",
      "914803200.0 = 10588.0 jours\n"
     ]
    }
   ],
   "source": [
    "\"\"\"\n",
    "02\n",
    "forecast\n",
    "[1617408000000, 1722643200000]\n",
    "historical\n",
    "[725846400000, 1640649600000]\n",
    "\n",
    "\"\"\"\n",
    "\n",
    "print(\"---------------- O2 forecast\")\n",
    "min_date=1617408000000\n",
    "max_date=1722643200000\n",
    "print(f\"min = {min_date/1000}\") # 2024-07-13 00:00:00\n",
    "print(datetime.fromtimestamp(min_date/1000.0))\n",
    "print(f\"max = {max_date/1000}\") # 2024-07-30 01:00:00\n",
    "print(datetime.fromtimestamp(max_date/1000.0))\n",
    "\n",
    "forecast_duration = max_date/1000 - min_date/1000\n",
    "print(f\"{forecast_duration} = {forecast_duration/86400} jours\")\n",
    "\n",
    "print(\"---------------- O2 history\")\n",
    "min_date=725846400000\n",
    "max_date=1640649600000\n",
    "print(f\"min = {min_date/1000}\") # 2024-07-13 00:00:00\n",
    "print(datetime.fromtimestamp(min_date/1000.0))\n",
    "print(f\"max = {max_date/1000}\") # 2024-07-30 01:00:00\n",
    "print(datetime.fromtimestamp(max_date/1000.0))\n",
    "\n",
    "history_duration = max_date/1000 - min_date/1000\n",
    "print(f\"{history_duration} = {history_duration/86400} jours\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "--------------------------------------------\n",
      "'source = copernicus-o2'\n",
      "'end_date = 2024-07-02 00:00:00'\n",
      "'start_date = 2024-07-01 00:00:00'\n",
      "'download forecast'\n",
      "INFO - 2024-07-26T19:11:47Z - You forced selection of dataset version \"202211\"\n",
      "INFO - 2024-07-26T19:11:47Z - You forced selection of dataset part \"default\"\n",
      "INFO - 2024-07-26T19:11:47Z - You forced selection of service: arco-time-series\n",
      "\n",
      "--------------------------------------------\n",
      "'source = copernicus-sea'\n",
      "'end_date = 2024-07-02 00:00:00'\n",
      "'start_date = 2024-07-01 00:00:00'\n",
      "'download forecast'\n",
      "INFO - 2024-07-26T19:11:50Z - You forced selection of dataset version \"202311\"\n",
      "INFO - 2024-07-26T19:11:50Z - You forced selection of dataset part \"default\"\n",
      "INFO - 2024-07-26T19:11:50Z - You forced selection of service: arco-time-series\n",
      "\n",
      "--------------------------------------------\n",
      "'source = copernicus-temp'\n",
      "'end_date = 2024-07-02 00:00:00'\n",
      "'start_date = 2024-07-01 00:00:00'\n",
      "'download forecast'\n",
      "INFO - 2024-07-26T19:11:54Z - You forced selection of dataset version \"202211\"\n",
      "INFO - 2024-07-26T19:11:54Z - You forced selection of dataset part \"default\"\n",
      "INFO - 2024-07-26T19:11:54Z - You forced selection of service: arco-time-series\n"
     ]
    }
   ],
   "source": [
    "from datetime import datetime, timedelta\n",
    "from pprint import pprint\n",
    "\n",
    "CopernicusTempSourceNew = Source(\n",
    "    \"copernicus-temp\",\n",
    "    1472400,\n",
    "    [1720821600, 1722294000],\n",
    "    {\n",
    "        SourceMode.FORECAST: None,\n",
    "        SourceMode.HISTORICAL: None,\n",
    "    },\n",
    "    {\n",
    "        SourceMode.FORECAST: [\n",
    "            (\n",
    "                \"\"\"\n",
    "                {\n",
    "                \"dataset_id\" : \"cmems_mod_ibi_phy_anfc_0.027deg-3D_P1D-m\", \n",
    "                \"minimum_longitude\" : -1.4161,\n",
    "                \"maximum_longitude\" : -1.4161,\n",
    "                \"minimum_latitude\" : 45.5839,\n",
    "                \"maximum_latitude\" : 45.5839,\n",
    "                \"minimum_depth\" : 0.4940,\n",
    "                \"maximum_depth\" : 0.4941,\n",
    "                \"variables\" : [\"so\", \"thetao\"]\n",
    "                }\n",
    "                \"\"\"\n",
    "            ),\n",
    "        ],\n",
    "        SourceMode.HISTORICAL: [\n",
    "            (\n",
    "                \"\"\"\n",
    "                {\n",
    "                \"dataset_id\" : \"cmems_mod_ibi_phy_my_0.083deg-3D_P1D-m\", \n",
    "                \"minimum_longitude\" : -1.4167,\n",
    "                \"maximum_longitude\" : -1.4167,\n",
    "                \"minimum_latitude\" : 45.5833,\n",
    "                \"maximum_latitude\" : 45.5833,\n",
    "                \"minimum_depth\" : 0.50576,\n",
    "                \"maximum_depth\" : 0.50577,\n",
    "                \"variables\" : [\"so\", \"thetao\"]\n",
    "                }\n",
    "                \"\"\"\n",
    "            )\n",
    "        ],\n",
    "    },\n",
    "    [VariableFrLiq3D.SALINITE_OCEAN, VariableFrLiq3D.TEMP_OCEAN],\n",
    ")\n",
    "\n",
    "\n",
    "CopernicusO2SourceNew = Source(\n",
    "    \"copernicus-o2\", # name\n",
    "    345600, # forecast_duration\n",
    "    [75340800], # history_duration\n",
    "    {\n",
    "        SourceMode.FORECAST: None,\n",
    "        SourceMode.HISTORICAL: None,\n",
    "    },\n",
    "    {\n",
    "        SourceMode.FORECAST: [\n",
    "            (\n",
    "                \"\"\"\n",
    "                {\n",
    "                \"dataset_id\" : \"cmems_mod_ibi_bgc_anfc_0.027deg-3D_P1D-m\", \n",
    "                \"minimum_longitude\" : -1.4167,\n",
    "                \"maximum_longitude\" : -1.4167,\n",
    "                \"minimum_latitude\" : 45.5833,\n",
    "                \"maximum_latitude\" : 45.5833,\n",
    "                \"minimum_depth\" : 0.4940,\n",
    "                \"maximum_depth\" : 0.4941,\n",
    "                \"variables\" : [\"o2\", \"nh4\"]\n",
    "                }\n",
    "                \"\"\"\n",
    "            ),\n",
    "        ],\n",
    "        SourceMode.HISTORICAL: [\n",
    "            (\n",
    "                \"\"\"\n",
    "                {\n",
    "                \"dataset_id\" : \"cmems_mod_ibi_bgc_my_0.083deg-3D_P1D-m\", \n",
    "                \"minimum_longitude\" : -1.4167,\n",
    "                \"maximum_longitude\" : -1.4167,\n",
    "                \"minimum_latitude\" : 45.5833,\n",
    "                \"maximum_latitude\" : 45.5833,\n",
    "                \"minimum_depth\" : 0.50576,\n",
    "                \"maximum_depth\" : 0.50577,\n",
    "                \"variables\" : [\"o2\", \"nh4\"]\n",
    "                }\n",
    "                \"\"\"\n",
    "            )\n",
    "        ],\n",
    "    },\n",
    "    # variables : \n",
    "    [VariableFrLiq3D.O2_OCEAN, VariableFrLiq3D.AMMONIUM_OCEAN],\n",
    ")\n",
    "\n",
    "CopernicusSeaSourceNew = Source(\n",
    "    \"copernicus-sea\",\n",
    "    691200,\n",
    "    [75340800],\n",
    "    {\n",
    "        SourceMode.FORECAST: None,\n",
    "        SourceMode.HISTORICAL: None,\n",
    "    },\n",
    "    {\n",
    "        SourceMode.FORECAST: [\n",
    "            (\n",
    "                \"\"\"\n",
    "                {\n",
    "                \"dataset_id\" : \"cmems_mod_ibi_wav_anfc_0.05deg_PT1H-i\", \n",
    "                \"minimum_longitude\" : -2.10,\n",
    "                \"maximum_longitude\" : -2.10,\n",
    "                \"minimum_latitude\" : 45.60,\n",
    "                \"maximum_latitude\" : 45.60,\n",
    "                \"minimum_depth\" : 0.50576,\n",
    "                \"maximum_depth\" : 0.50577,\n",
    "                \"variables\" : [\"VHM0\", \"VTPK\", \"VMDR\"]\n",
    "                }\n",
    "                \"\"\"\n",
    "            ),\n",
    "        ],\n",
    "        SourceMode.HISTORICAL: [\n",
    "            (\n",
    "                \"\"\"\n",
    "                {\n",
    "                \"dataset_id\" : \"cmems_mod_ibi_wav_my_0.027deg_PT1H-i\", \n",
    "                \"minimum_longitude\" : -2.10,\n",
    "                \"maximum_longitude\" : -2.10,\n",
    "                \"minimum_latitude\" : 45.60,\n",
    "                \"maximum_latitude\" : 45.60,\n",
    "                \"minimum_depth\" : 0.50576,\n",
    "                \"maximum_depth\" : 0.50577,\n",
    "                \"variables\" : [\"VHM0\", \"VTPK\", \"VMDR\"]\n",
    "                }\n",
    "                \"\"\"\n",
    "            )\n",
    "        ],\n",
    "    },\n",
    "    [\n",
    "        VariableHoule.HAUTEUR_VAGUE,\n",
    "        VariableHoule.FREQUENCE_VAGUE,\n",
    "        VariableHoule.DIRECTION_VAGUE,\n",
    "    ],\n",
    ")\n",
    "\n",
    "def find_subset(dataset: dict, key_filtered: str, key_filter: str, value_filter: str)-> dict :\n",
    "    return [data[key_filtered] for data in dataset if data[key_filter] == value_filter][0]\n",
    "\n",
    "copernicus_versions: dict = {}\n",
    "\n",
    "def find_source_limits(dataset: dict, copernicus_dataset: str, copernicus_variable: str) -> list :\n",
    "    versions = find_subset(all_datasets, 'versions', 'dataset_id', copernicus_dataset)\n",
    "    labels = [data['label'] for data in versions]\n",
    "\n",
    "    labels.sort()\n",
    "    label = labels[-1]\n",
    "    copernicus_versions[copernicus_dataset] = label\n",
    "    \n",
    "    parts = find_subset(versions, 'parts', 'label', label)\n",
    "    services = find_subset(parts, 'services', 'name', 'default')\n",
    "    variables = [data['variables'] for data in services if data['service_type']['service_name'] == 'arco-time-series'][0]\n",
    "    coordinates = find_subset(variables, 'coordinates', 'short_name', copernicus_variable)\n",
    "    return [[data['minimum_value'],data['maximum_value']] for data in coordinates if data['coordinates_id'] == 'time'][0]\n",
    "\n",
    "\n",
    "\n",
    "def check_limits(all_datasets: list, source: str, var: str) -> (datetime, datetime) : \n",
    "    limits = find_source_limits(all_datasets, source, var)\n",
    "    return datetime.fromtimestamp(limits[0]/1000), datetime.fromtimestamp(limits[1]/1000)\n",
    "\n",
    "\n",
    "def download_copernicus(all_datasets: list, source_remplacer_par_self: Source, start_date: datetime, end_date: datetime) -> bool:\n",
    "    \"\"\"Download forecast data from copernicus website\n",
    "    Data are requested from a center point defined in the parameters\n",
    "\n",
    "    :param CopernicusSource self: copernicus source\n",
    "    :param datetime start_date: start date\n",
    "    :param datetime end_date: end date\n",
    "    :returns: bool\n",
    "    \"\"\"\n",
    "    try:\n",
    "        print(\"\")\n",
    "        print(\"--------------------------------------------\")\n",
    "        pprint(f\"source = {source_remplacer_par_self.name}\")\n",
    "\n",
    "        paramsForecast = json.loads(source_remplacer_par_self.api_params[SourceMode.FORECAST][0])\n",
    "        start_forecast, end_forecast = check_limits(all_datasets, paramsForecast[\"dataset_id\"], paramsForecast[\"variables\"][0])\n",
    "        \n",
    "        paramsHistorical = json.loads(source_remplacer_par_self.api_params[SourceMode.HISTORICAL][0])\n",
    "        start_historical, end_historical = check_limits(all_datasets, paramsHistorical[\"dataset_id\"], paramsHistorical[\"variables\"][0])\n",
    "        \n",
    "\n",
    "        if (end_date > end_forecast):\n",
    "            pprint(\"date de fin > aux dernières estimations\")\n",
    "        elif(start_date < start_historical):\n",
    "            pprint(\"date de début < aux premiers relevés\")\n",
    "        \n",
    "        end_date = min(end_date, end_forecast)\n",
    "        start_date = max(start_date, start_historical)\n",
    "        pprint(f\"end_date = {end_date}\")\n",
    "        pprint(f\"start_date = {start_date}\")\n",
    "        \n",
    "        if start_date >= start_forecast :\n",
    "            mode = SourceMode.FORECAST\n",
    "            pprint(\"download forecast\")\n",
    "        \n",
    "        elif end_date < start_forecast :\n",
    "            mode = SourceMode.HISTORICAL\n",
    "            pprint(\"download history\")\n",
    "        \n",
    "        paramsCopernicus = json.loads(source_remplacer_par_self.api_params[mode][0])\n",
    "        \n",
    "        dataset = copernicusmarine.open_dataset(\n",
    "            dataset_id = paramsCopernicus[\"dataset_id\"],\n",
    "            dataset_part = \"default\",\n",
    "            service = \"arco-time-series\",\n",
    "            minimum_longitude = paramsCopernicus[\"minimum_longitude\"],\n",
    "            maximum_longitude = paramsCopernicus[\"maximum_longitude\"],\n",
    "            minimum_latitude = paramsCopernicus[\"minimum_latitude\"],\n",
    "            maximum_latitude = paramsCopernicus[\"maximum_latitude\"],\n",
    "            minimum_depth = paramsCopernicus[\"minimum_depth\"],\n",
    "            maximum_depth = paramsCopernicus[\"maximum_depth\"],\n",
    "            dataset_version = copernicus_versions[paramsCopernicus[\"dataset_id\"]],\n",
    "            start_datetime = start_date.isoformat(), \n",
    "            end_datetime = end_date.isoformat(), \n",
    "            variables = paramsCopernicus[\"variables\"])\n",
    "        \n",
    "\n",
    "        return True\n",
    "\n",
    "    except Exception as err:\n",
    "        raise ValueError(f\"Error in dowloading Copernicus datas : {err}\") from err\n",
    "\n",
    "formatting = \"%Y-%m-%d %H:%M:%S\"\n",
    "start_date = datetime.strptime('2024-07-01 00:00:00',formatting)\n",
    "end_date = datetime.strptime('2024-07-02 00:00:00',formatting)\n",
    "\n",
    "copernicus_catalog = copernicusmarine.describe(include_datasets=True)\n",
    "all_datasets_list = [data['datasets'] for data in copernicus_catalog['products']]\n",
    "all_datasets = [item for sublist in all_datasets_list for item in sublist]\n",
    "\n",
    "for source in [CopernicusO2SourceNew, CopernicusSeaSourceNew, CopernicusTempSourceNew]:\n",
    "    download_copernicus(all_datasets, source, start_date, end_date)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[0;31mSignature:\u001b[0m\n",
      "\u001b[0mcopernicusmarine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen_dataset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mdataset_url\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mdataset_id\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mdataset_version\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mdataset_part\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0musername\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mpassword\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mvariables\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mList\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mminimum_longitude\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfloat\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mmaximum_longitude\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfloat\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mminimum_latitude\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfloat\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mmaximum_latitude\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfloat\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mminimum_depth\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfloat\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mmaximum_depth\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfloat\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mvertical_dimension_as_originally_produced\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbool\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mstart_datetime\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdatetime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdatetime\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mend_datetime\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdatetime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdatetime\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0msubset_method\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mLiteral\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'nearest'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'strict'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'nearest'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mservice\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mcredentials_file\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpathlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0moverwrite_metadata_cache\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbool\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mno_metadata_cache\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbool\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mdisable_progress_bar\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbool\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mxarray\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDataset\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mDocstring:\u001b[0m\n",
      "Load an xarray dataset using \"lazy-loading\" mode from a Copernicus Marine data source using either the ARCO series protocol.\n",
      "This means that data is only loaded into memory when a computation is called, optimizing RAM usage by avoiding immediate loading.\n",
      "It supports various parameters for customization, such as specifying ge ographical bounds, temporal range, depth range, and more.\n",
      "\n",
      "Args:\n",
      "    dataset_url (str, optional): The URL of the dataset. Either `dataset_url` or `dataset_id` should be provided.\n",
      "    dataset_id (str, optional): The ID of the dataset. Either `dataset_url` or `dataset_id` should be provided.\n",
      "    dataset_version (str, optional): Force the use of a specific dataset version.\n",
      "    dataset_part (str, optional): Force the use of a specific dataset part.\n",
      "    username (str, optional): Username for authentication, if required.\n",
      "    password (str, optional): Password for authentication, if required.\n",
      "    variables (List[str], optional): List of variable names to be loaded from the dataset.\n",
      "    minimum_longitude (float, optional): The minimum longitude for subsetting the data.\n",
      "    maximum_longitude (float, optional): The maximum longitude for subsetting the data.\n",
      "    minimum_latitude (float, optional): The minimum latitude for subsetting the data.\n",
      "    maximum_latitude (float, optional): The maximum latitude for subsetting the data.\n",
      "    minimum_depth (float, optional): The minimum depth for subsetting the data.\n",
      "    maximum_depth (float, optional): The maximum depth for subsetting the data.\n",
      "    vertical_dimension_as_originally_produced (bool, optional): If True, use the vertical dimension as originally produced.\n",
      "    start_datetime (datetime, optional): The start datetime for temporal subsetting.\n",
      "    end_datetime (datetime, optional): The end datetime for temporal subsetting.\n",
      "    service (str, optional): Force the use of a specific service (ARCO geo series or time series).\n",
      "    credentials_file (Union[pathlib.Path, str], optional): Path to a file containing authentication credentials.\n",
      "    overwrite_metadata_cache (bool, optional): If True, overwrite the metadata cache.\n",
      "    no_metadata_cache (bool, optional): If True, do not use the metadata cache.\n",
      "\n",
      "Returns:\n",
      "    xarray.Dataset: The loaded xarray dataset.\n",
      "\u001b[0;31mFile:\u001b[0m      ~/.pyenv/versions/3.10.12/envs/gpmb/lib/python3.10/site-packages/copernicusmarine/python_interface/open_dataset.py\n",
      "\u001b[0;31mType:\u001b[0m      function"
     ]
    }
   ],
   "source": [
    "copernicusmarine.open_dataset?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "forecast_end_date = 2027-11-26 23:59:59\n",
      "end_date_cut = 2024-07-25 02:00:00\n",
      "forecast_limit = 1972-07-30 10:15:57.104582\n",
      "end_date_cut = 2024-07-26 00:00:00\n",
      "start_date_cut = 2024-07-24 00:00:00\n",
      "Result : mode = FORECAST, start = 2024-07-24 00:00:00, end = 2024-07-26 00:00:00\n"
     ]
    }
   ],
   "source": [
    "from datetime import datetime, timedelta\n",
    "formatting = \"%Y-%m-%d %I:%M:%S\"\n",
    "\n",
    "forecast_duration = 105235200\n",
    "forecast_end_date = '2024-08-03 02:00:00'\n",
    "history_duration = [105235200]\n",
    "#------------------------------------\n",
    "start_date = datetime.strptime('2024-07-24 02:00:00',formatting)\n",
    "end_date = datetime.strptime('2024-07-25 02:00:00',formatting)\n",
    "#------------------------------------\n",
    "forecast_end_date = datetime.now().replace(hour=23, minute=59, second=59, microsecond=0) + timedelta(seconds=forecast_duration)\n",
    "print(f\"forecast_end_date = {forecast_end_date}\")\n",
    "end_date_cut = min(forecast_end_date, end_date)\n",
    "print(f\"end_date_cut = {end_date_cut}\")\n",
    "\n",
    "for history_duration in history_duration:\n",
    "    forecast_limit = datetime.now() - timedelta(seconds=history_duration)\n",
    "    print(f\"forecast_limit = {forecast_limit}\")\n",
    "\n",
    "    if end_date_cut < forecast_limit:\n",
    "        mode = \"HISTORICAL\"\n",
    "    else:\n",
    "        mode = \"FORECAST\"\n",
    "        break\n",
    "    print(f\"mode = {mode}\")\n",
    "\n",
    "# If the end date has been cut, because of the forecast limit,\n",
    "# it needs to end the next day at midnight.\n",
    "if (end_date_cut.hour != 0 or end_date_cut.minute != 0 or end_date_cut.second != 0 or end_date_cut.microsecond != 0):\n",
    "    end_date_cut = (end_date_cut + timedelta(days=1)).replace(hour=0, minute=0, second=0, microsecond=0)\n",
    "    print(f\"end_date_cut = {end_date_cut}\")\n",
    "\n",
    "\n",
    "start_date_cut = start_date.replace(hour=0, minute=0, second=0, microsecond=0)\n",
    "print(f\"start_date_cut = {start_date_cut}\")\n",
    "\n",
    "\n",
    "print(f\"Result : mode = {mode}, start = {start_date_cut}, end = {end_date_cut}\")\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Fetching catalog: 100%|██████████| 3/3 [00:13<00:00,  4.61s/it]\n"
     ]
    },
    {
     "ename": "KeyError",
     "evalue": "\"The requested dataset 'IBI_ANALYSISFORECAST_PHY_005_001' was not found in the catalogue, you can use 'copernicusmarine describe --include-datasets --contains <search_token>' to find datasets\"",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mStopIteration\u001b[0m                             Traceback (most recent call last)",
      "File \u001b[0;32m~/.pyenv/versions/3.10.12/envs/gpmb/lib/python3.10/site-packages/copernicusmarine/core_functions/utils.py:105\u001b[0m, in \u001b[0;36mnext_or_raise_exception\u001b[0;34m(iterator, exception_to_raise)\u001b[0m\n\u001b[1;32m    104\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 105\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mnext\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    106\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exception:\n",
      "\u001b[0;31mStopIteration\u001b[0m: ",
      "\nThe above exception was the direct cause of the following exception:\n",
      "\u001b[0;31mKeyError\u001b[0m                                  Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[36], line 30\u001b[0m\n\u001b[1;32m     10\u001b[0m paramsCopernicus \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m     11\u001b[0m     \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdataset_id\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcmems_mod_ibi_bgc_anfc_0.027deg-3D_P1D-m\u001b[39m\u001b[38;5;124m'\u001b[39m, \n\u001b[1;32m     12\u001b[0m     \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mminimum_longitude\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1.4167\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmaximum_longitude\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1.4167\u001b[39m, \n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     15\u001b[0m     \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvariables\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mo2\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnh4\u001b[39m\u001b[38;5;124m'\u001b[39m]\n\u001b[1;32m     16\u001b[0m     }\n\u001b[1;32m     18\u001b[0m paramsCopernicus \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m     19\u001b[0m     \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdataset_id\u001b[39m\u001b[38;5;124m'\u001b[39m: \n\u001b[1;32m     20\u001b[0m     \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIBI_ANALYSISFORECAST_PHY_005_001\u001b[39m\u001b[38;5;124m'\u001b[39m, \n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     26\u001b[0m     \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmaximum_depth\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m0.494\u001b[39m, \n\u001b[1;32m     27\u001b[0m     \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvariables\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mso\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mthetao\u001b[39m\u001b[38;5;124m'\u001b[39m]}\n\u001b[0;32m---> 30\u001b[0m dataset \u001b[38;5;241m=\u001b[39m \u001b[43mcopernicusmarine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mopen_dataset\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m     31\u001b[0m \u001b[43m            \u001b[49m\u001b[43mdataset_id\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mparamsCopernicus\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mdataset_id\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     32\u001b[0m \u001b[43m            \u001b[49m\u001b[43mdataset_part\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mdefault\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m     33\u001b[0m \u001b[43m            \u001b[49m\u001b[43mservice\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43marco-time-series\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m     34\u001b[0m \u001b[43m            \u001b[49m\u001b[43mminimum_longitude\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mparamsCopernicus\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mminimum_longitude\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     35\u001b[0m \u001b[43m            \u001b[49m\u001b[43mmaximum_longitude\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mparamsCopernicus\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmaximum_longitude\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     36\u001b[0m \u001b[43m            \u001b[49m\u001b[43mminimum_latitude\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mparamsCopernicus\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mminimum_latitude\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     37\u001b[0m \u001b[43m            \u001b[49m\u001b[43mmaximum_latitude\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mparamsCopernicus\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmaximum_latitude\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     38\u001b[0m \u001b[43m            \u001b[49m\u001b[43mminimum_depth\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mparamsCopernicus\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mminimum_depth\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     39\u001b[0m \u001b[43m            \u001b[49m\u001b[43mmaximum_depth\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mparamsCopernicus\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmaximum_depth\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     40\u001b[0m \u001b[43m            \u001b[49m\u001b[43mstart_datetime\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstart_date\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43misoformat\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# todo au format yyyy-mm-dd?\u001b[39;49;00m\n\u001b[1;32m     41\u001b[0m \u001b[43m            \u001b[49m\u001b[43mend_datetime\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mend_date\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43misoformat\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# todo au format yyyy-mm-dd?\u001b[39;49;00m\n\u001b[1;32m     42\u001b[0m \u001b[43m            \u001b[49m\u001b[43mvariables\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mparamsCopernicus\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mvariables\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/.pyenv/versions/3.10.12/envs/gpmb/lib/python3.10/site-packages/copernicusmarine/core_functions/deprecated.py:77\u001b[0m, in \u001b[0;36mdeprecated_python_option.<locals>.deco.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m     74\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(f)\n\u001b[1;32m     75\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m     76\u001b[0m     rename_kwargs(f\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, kwargs, aliases)\n\u001b[0;32m---> 77\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/.pyenv/versions/3.10.12/envs/gpmb/lib/python3.10/site-packages/copernicusmarine/python_interface/exception_handler.py:17\u001b[0m, in \u001b[0;36mlog_exception_and_exit.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m     15\u001b[0m     \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAbort\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m     16\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exception:\n\u001b[0;32m---> 17\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m exception\n",
      "File \u001b[0;32m~/.pyenv/versions/3.10.12/envs/gpmb/lib/python3.10/site-packages/copernicusmarine/python_interface/exception_handler.py:13\u001b[0m, in \u001b[0;36mlog_exception_and_exit.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m     10\u001b[0m \u001b[38;5;129m@wraps\u001b[39m(function)\n\u001b[1;32m     11\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m     12\u001b[0m     \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m---> 13\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunction\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     14\u001b[0m     \u001b[38;5;28;01mexcept\u001b[39;00m click\u001b[38;5;241m.\u001b[39mAbort:\n\u001b[1;32m     15\u001b[0m         \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAbort\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
      "File \u001b[0;32m~/.pyenv/versions/3.10.12/envs/gpmb/lib/python3.10/site-packages/copernicusmarine/python_interface/open_dataset.py:141\u001b[0m, in \u001b[0;36mopen_dataset\u001b[0;34m(dataset_url, dataset_id, dataset_version, dataset_part, username, password, variables, minimum_longitude, maximum_longitude, minimum_latitude, maximum_latitude, minimum_depth, maximum_depth, vertical_dimension_as_originally_produced, start_datetime, end_datetime, subset_method, service, credentials_file, overwrite_metadata_cache, no_metadata_cache, disable_progress_bar)\u001b[0m\n\u001b[1;32m    105\u001b[0m credentials_file \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m    106\u001b[0m     pathlib\u001b[38;5;241m.\u001b[39mPath(credentials_file) \u001b[38;5;28;01mif\u001b[39;00m credentials_file \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m    107\u001b[0m )\n\u001b[1;32m    108\u001b[0m load_request \u001b[38;5;241m=\u001b[39m LoadRequest(\n\u001b[1;32m    109\u001b[0m     dataset_url\u001b[38;5;241m=\u001b[39mdataset_url,\n\u001b[1;32m    110\u001b[0m     dataset_id\u001b[38;5;241m=\u001b[39mdataset_id,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    139\u001b[0m     no_metadata_cache\u001b[38;5;241m=\u001b[39mno_metadata_cache,\n\u001b[1;32m    140\u001b[0m )\n\u001b[0;32m--> 141\u001b[0m dataset \u001b[38;5;241m=\u001b[39m \u001b[43mload_data_object_from_load_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    142\u001b[0m \u001b[43m    \u001b[49m\u001b[43mload_request\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    143\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdisable_progress_bar\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    144\u001b[0m \u001b[43m    \u001b[49m\u001b[43mopen_dataset_from_arco_series\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    145\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    146\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m dataset\n",
      "File \u001b[0;32m~/.pyenv/versions/3.10.12/envs/gpmb/lib/python3.10/site-packages/copernicusmarine/python_interface/load_utils.py:41\u001b[0m, in \u001b[0;36mload_data_object_from_load_request\u001b[0;34m(load_request, disable_progress_bar, arco_series_load_function)\u001b[0m\n\u001b[1;32m     35\u001b[0m     delete_cache_folder()\n\u001b[1;32m     37\u001b[0m catalogue \u001b[38;5;241m=\u001b[39m parse_catalogue(\n\u001b[1;32m     38\u001b[0m     no_metadata_cache\u001b[38;5;241m=\u001b[39mload_request\u001b[38;5;241m.\u001b[39mno_metadata_cache,\n\u001b[1;32m     39\u001b[0m     disable_progress_bar\u001b[38;5;241m=\u001b[39mdisable_progress_bar,\n\u001b[1;32m     40\u001b[0m )\n\u001b[0;32m---> 41\u001b[0m retrieval_service: RetrievalService \u001b[38;5;241m=\u001b[39m \u001b[43mget_retrieval_service\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m     42\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcatalogue\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcatalogue\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     43\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdataset_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mload_request\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdataset_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     44\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdataset_url\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mload_request\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdataset_url\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     45\u001b[0m \u001b[43m    \u001b[49m\u001b[43mforce_dataset_version_label\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mload_request\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mforce_dataset_version\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     46\u001b[0m \u001b[43m    \u001b[49m\u001b[43mforce_dataset_part_label\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mload_request\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mforce_dataset_part\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     47\u001b[0m \u001b[43m    \u001b[49m\u001b[43mforce_service_type_string\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mload_request\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mforce_service\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     48\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcommand_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mCommandType\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mLOAD\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     49\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdataset_subset\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mload_request\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_time_and_geographical_subset\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     50\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     51\u001b[0m username, password \u001b[38;5;241m=\u001b[39m get_username_password(\n\u001b[1;32m     52\u001b[0m     load_request\u001b[38;5;241m.\u001b[39musername,\n\u001b[1;32m     53\u001b[0m     load_request\u001b[38;5;241m.\u001b[39mpassword,\n\u001b[1;32m     54\u001b[0m     load_request\u001b[38;5;241m.\u001b[39mcredentials_file,\n\u001b[1;32m     55\u001b[0m )\n\u001b[1;32m     56\u001b[0m load_request\u001b[38;5;241m.\u001b[39mdataset_url \u001b[38;5;241m=\u001b[39m retrieval_service\u001b[38;5;241m.\u001b[39muri\n",
      "File \u001b[0;32m~/.pyenv/versions/3.10.12/envs/gpmb/lib/python3.10/site-packages/copernicusmarine/core_functions/services_utils.py:340\u001b[0m, in \u001b[0;36mget_retrieval_service\u001b[0;34m(catalogue, dataset_id, dataset_url, force_dataset_version_label, force_dataset_part_label, force_service_type_string, command_type, index_parts, dataset_subset, dataset_sync, username)\u001b[0m\n\u001b[1;32m    337\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m syntax_error\n\u001b[1;32m    338\u001b[0m     suffix_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m--> 340\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_get_retrieval_service_from_dataset_id\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    341\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcatalogue\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcatalogue\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    342\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdataset_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdataset_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    343\u001b[0m \u001b[43m    \u001b[49m\u001b[43msuffix_path\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msuffix_path\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    344\u001b[0m \u001b[43m    \u001b[49m\u001b[43mforce_dataset_version_label\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mforce_dataset_version_label\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    345\u001b[0m \u001b[43m    \u001b[49m\u001b[43mforce_dataset_part_label\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mforce_dataset_part_label\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    346\u001b[0m \u001b[43m    \u001b[49m\u001b[43mforce_service_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mforce_service_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    347\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcommand_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcommand_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    348\u001b[0m \u001b[43m    \u001b[49m\u001b[43mindex_parts\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mindex_parts\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    349\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdataset_subset\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdataset_subset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    350\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdataset_sync\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdataset_sync\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    351\u001b[0m \u001b[43m    \u001b[49m\u001b[43musername\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43musername\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    352\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/.pyenv/versions/3.10.12/envs/gpmb/lib/python3.10/site-packages/copernicusmarine/core_functions/services_utils.py:368\u001b[0m, in \u001b[0;36m_get_retrieval_service_from_dataset_id\u001b[0;34m(catalogue, dataset_id, suffix_path, force_dataset_version_label, force_dataset_part_label, force_service_type, command_type, index_parts, dataset_subset, dataset_sync, username)\u001b[0m\n\u001b[1;32m    355\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_get_retrieval_service_from_dataset_id\u001b[39m(\n\u001b[1;32m    356\u001b[0m     catalogue: CopernicusMarineCatalogue,\n\u001b[1;32m    357\u001b[0m     dataset_id: \u001b[38;5;28mstr\u001b[39m,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    366\u001b[0m     username: Optional[\u001b[38;5;28mstr\u001b[39m],\n\u001b[1;32m    367\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m RetrievalService:\n\u001b[0;32m--> 368\u001b[0m     dataset: CopernicusMarineProductDataset \u001b[38;5;241m=\u001b[39m \u001b[43mnext_or_raise_exception\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    369\u001b[0m \u001b[43m        \u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    370\u001b[0m \u001b[43m            \u001b[49m\u001b[43mdataset\u001b[49m\n\u001b[1;32m    371\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mproduct\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mcatalogue\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mproducts\u001b[49m\n\u001b[1;32m    372\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mdataset\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mproduct\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdatasets\u001b[49m\n\u001b[1;32m    373\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mdataset_id\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mdataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdataset_id\u001b[49m\n\u001b[1;32m    374\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    375\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;167;43;01mKeyError\u001b[39;49;00m\u001b[43m(\u001b[49m\n\u001b[1;32m    376\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mThe requested dataset \u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mdataset_id\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m was not found in the catalogue,\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m    377\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m you can use \u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mcopernicusmarine describe --include-datasets \u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m    378\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m--contains <search_token>\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m to find datasets\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m    379\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    380\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    381\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m _get_retrieval_service_from_dataset(\n\u001b[1;32m    382\u001b[0m         dataset\u001b[38;5;241m=\u001b[39mdataset,\n\u001b[1;32m    383\u001b[0m         suffix_path\u001b[38;5;241m=\u001b[39msuffix_path,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    391\u001b[0m         username\u001b[38;5;241m=\u001b[39musername,\n\u001b[1;32m    392\u001b[0m     )\n",
      "File \u001b[0;32m~/.pyenv/versions/3.10.12/envs/gpmb/lib/python3.10/site-packages/copernicusmarine/core_functions/utils.py:107\u001b[0m, in \u001b[0;36mnext_or_raise_exception\u001b[0;34m(iterator, exception_to_raise)\u001b[0m\n\u001b[1;32m    105\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mnext\u001b[39m(iterator)\n\u001b[1;32m    106\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exception:\n\u001b[0;32m--> 107\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m exception_to_raise \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mexception\u001b[39;00m\n",
      "\u001b[0;31mKeyError\u001b[0m: \"The requested dataset 'IBI_ANALYSISFORECAST_PHY_005_001' was not found in the catalogue, you can use 'copernicusmarine describe --include-datasets --contains <search_token>' to find datasets\""
     ]
    }
   ],
   "source": [
    "params = SimulationParameters( model=model3D,\n",
    "                                        project_id=ProjectId3D,\n",
    "                                        sources=sources3D,\n",
    "                                        start_date=\"2024-06-26 00:00:00\",\n",
    "                                        end_date=\"2024-06-28 00:00:00\",\n",
    "                                        naos_token=NAOS_TOKEN,\n",
    "                                        write_in_naos=WRITE_IN_NAOS,\n",
    "                                        )\n",
    "                                    \n",
    "paramsCopernicus = {\n",
    "    'dataset_id': 'cmems_mod_ibi_bgc_anfc_0.027deg-3D_P1D-m', \n",
    "    'minimum_longitude': -1.4167, 'maximum_longitude': -1.4167, \n",
    "    'minimum_latitude': 45.5833, 'maximum_latitude': 45.5833, \n",
    "    'minimum_depth': 0.494, 'maximum_depth': 0.4941, \n",
    "    'variables': ['o2', 'nh4']\n",
    "    }\n",
    "\n",
    "paramsCopernicus = {\n",
    "    'dataset_id': \n",
    "    'cmems_mod_ibi_phy_anfc_0.027deg-3D_PT1H-m', \n",
    "    'minimum_longitude': -1.4161, \n",
    "    'maximum_longitude': -1.4161, \n",
    "    'minimum_latitude': 45.5839, \n",
    "    'maximum_latitude': 45.5839, \n",
    "    'minimum_depth': 0.4939, \n",
    "    'maximum_depth': 0.494, \n",
    "    'variables': ['so', 'thetao']}\n",
    "\n",
    "\n",
    "dataset = copernicusmarine.open_dataset(\n",
    "            dataset_id = paramsCopernicus[\"dataset_id\"],\n",
    "            dataset_part = \"default\",\n",
    "            service = \"arco-time-series\",\n",
    "            minimum_longitude = paramsCopernicus[\"minimum_longitude\"],\n",
    "            maximum_longitude = paramsCopernicus[\"maximum_longitude\"],\n",
    "            minimum_latitude = paramsCopernicus[\"minimum_latitude\"],\n",
    "            maximum_latitude = paramsCopernicus[\"maximum_latitude\"],\n",
    "            minimum_depth = paramsCopernicus[\"minimum_depth\"],\n",
    "            maximum_depth = paramsCopernicus[\"maximum_depth\"],\n",
    "            start_datetime = params.start_date.isoformat(), # todo au format yyyy-mm-dd?\n",
    "            end_datetime = params.end_date.isoformat(), # todo au format yyyy-mm-dd?\n",
    "            variables = paramsCopernicus[\"variables\"])"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "gpmb",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}